

Signature matrices of membranes

Felix Lotter (joint with Leonard Schmitz) MPI MiS Leipzig

> Edinburgh May 2025

Supported by TRR388 A04

A membrane is a continuous map $X : [0,1]^2 \to \mathbb{R}^d$ such that all coordinate functions X_i are piecewise¹ continuously differentiable.

Example

¹ on a rectangular partition of $[0,1]^2$

A membrane is a continuous map $X : [0, 1]^2 \to \mathbb{R}^d$ such that all coordinate functions X_i are piecewise¹ continuously differentiable.

Example

 $(s,t) \mapsto (s\cos(2\pi t)^2 + \sin(4\pi t), 2\cos(2\pi t) - s\sin(2\pi t), 2\sin(2\pi t))$

¹on a rectangular partition of $[0,1]^2$

A membrane is a continuous map $X : [0,1]^2 \to \mathbb{R}^d$ such that all coordinate functions X_i are piecewise¹ continuously differentiable.

Example

¹on a rectangular partition of $[0, 1]^2$

A membrane is a continuous map $X : [0,1]^2 \to \mathbb{R}^d$ such that all coordinate functions X_i are piecewise¹ continuously differentiable.

Example

¹ on a rectangular partition of $[0, 1]^2$

The signature of a membrane

Definition (The (id)-signature²)

Let X be a membrane in \mathbb{R}^d . Let $A := \mathbb{R}\langle 1, \ldots, d \rangle$ denote the free associative algebra over the letters $1, \ldots, d$.

Then the (id-)signature of X is the linear form

$$\sigma(X) : A \to \mathbb{R},$$

$$\mathbf{i}_1 \dots \mathbf{i}_k \mapsto \int_{(\mathbf{s}, \mathbf{t}) \in \Delta_k^2} \partial_{12} X_{i_1}(s_1, t_1) \dots \partial_{12} X_{i_k}(s_k, t_k) \, \mathrm{dsdt}$$

where $\partial_{12} := \frac{\partial^2}{\partial s \partial t}$, $d\mathbf{t} = dt_1 \dots dt_k$, $d\mathbf{s} = ds_1 \dots ds_k$.

²J. Diehl, K. Ebrahimi-Fard, F. N. Harang, and S. Tindel. "On the signature of an image". In: *Stochastic Processes and their Applications* (2025), p. 104661.

The signature matrix

Restricting to words of length 2, $\sigma(X)$ defines a $d \times d$ matrix S(X), which we call the *signature matrix* of X:

 $S(X)_{i,j} := \sigma(X)(ij)$

Explicitly, $S(X)_{i,j}$ is given by

$$\int_{0}^{1} \int_{0}^{1} \int_{0}^{s_{2}} \int_{0}^{t_{2}} \partial_{12} X_{i}(s_{1}, t_{1}) \cdot \partial_{12} X_{j}(s_{2}, t_{2}) \mathrm{d}s_{1} \mathrm{d}s_{2} \mathrm{d}t_{1} \mathrm{d}t_{2}$$

Example Let $X : [0,1]^2 \to \mathbb{R}^2, (s,t) \mapsto (2st, 3st)$. The signature matrix is $\left(\frac{1}{2}\right)^2 \begin{pmatrix} 2\\ 3 \end{pmatrix} \begin{pmatrix} 2 & 3 \end{pmatrix} = \frac{1}{4} \begin{pmatrix} 4 & 6\\ 6 & 9 \end{pmatrix}.$

Observations

• The signature is invariant under addition of functions that are linear in (s, t) and under reparametrisation.

Observations

- The signature is invariant under addition of functions that are linear in (s, t) and under reparametrisation.
- ▶ The signature is equivariant under linear transformations: if X is a membrane in \mathbb{R}^d and A is a $e \times d$ matrix then

$$\sigma(A \circ X)(\mathbf{w}) = \sigma(X)(A^{\top}.\mathbf{w}).$$

▶ The signature commutes with tensor products of paths: if X and Y are paths and Z denotes the membrane $(s,t) \mapsto X(s) \otimes Y(t)$, then

 $\sigma(Z)=\sigma(X)\otimes\sigma(Y).$

In particular, if $Z(s,t) = X(s) \cdot t$ then $\sigma^{(k)}(Z) = \frac{1}{k!} \sigma^{(k)}(X)$.

- The signature can vanish even for functions that are not linear in (s, t).
- The signature is *not* a homomorphism for the shuffle product on $\mathbb{R}(1, \ldots, d)$.

Observations

- The signature is invariant under addition of functions that are linear in (s, t) and under reparametrisation.
- ▶ The signature is equivariant under linear transformations: if X is a membrane in \mathbb{R}^d and A is a $e \times d$ matrix then

$$S(A \circ X) = AS(X)A^{\top}.$$

▶ The signature commutes with tensor products of paths: if X and Y are paths and Z denotes the membrane $(s,t) \mapsto X(s) \otimes Y(t)$, then

 $S(Z) = S(X) \otimes S(Y).$

In particular, if $Z(s,t) = X(s) \cdot t$ then $\sigma^{(k)}(Z) = \frac{1}{k!} \sigma^{(k)}(X)$.

- The signature can vanish even for functions that are not linear in (s, t).
- The signature is *not* a homomorphism for the shuffle product on $\mathbb{R}(1, \ldots, d)$.

Signature matrices of membranes

Theorem (L., Schmitz '24)

Let $d \in \mathbb{N}$. There are no algebraic relations on the set of signature matrices S(X) where X runs over membranes in \mathbb{R}^d .

In fact, this holds true already for the signature matrices of *polynomial* or *piecewise bilinear* membranes.

Remark

In contrast, signature matrices of paths always satisfy algebraic relations: they are the zero set of the 2-minors of the symmetric part of a $d \times d$ matrix.

A tale of two membranes

- Studying the algebraic relations on a set leads us to the realm of Algebraic Geometry.
- ▶ Inspired by the approach of Améndola, Friz and Sturmfels for path signatures³, we consider two parametrizable families of membranes for which the signature is a polynomial in the parameters:
 - A polynomial membrane of order m, n is a membrane X that is polynomial in both s and t with bidegree $\leq (m, n)$.
 - A piecewise bilinear membrane of order m, n is a membrane X such that there are $s_0 = 0 \le s_1 \le \cdots \le s_m = 1$ and $t_0 = 0 \le t_1 \le \cdots \le t_n = 1$ with X biaffine on all squares $[s_i, s_{i+1}] \times [t_j, t_{j+1}]$.
- These types of membranes are also important in application, for example to interpolate discrete data.

³C. Améndola, P. Friz, and B. Sturmfels. "Varieties of signature tensors". In: *Forum of Mathematics, Sigma* 7 (2019).

A polynomial membrane

Figure: A Bezier surface with 4×4 control points is a polynomial membrane of order (3,3).

A piecewise bilinear membrane

Figure: A piecewise bilinear membrane with 4×4 control points, that is, of order (3,3).

A tale of two membranes

▶ Both polynomial membranes of order (m, n) and piecewise bilinear membranes of order (m, n) in \mathbb{R}^d can be uniquely described by $m \times n$ -matrices A_1, \ldots, A_d .

Example

The matrix
$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
 corresponds to the polynomial

$$a_{11}st + a_{12}st^2 + a_{21}s^2t + a_{22}s^2t^2$$

and the piecewise bilinear membrane with 9 squares satisfying X(s,0) = X(0,t) = 0 and

$$\begin{pmatrix} X(\frac{1}{2},\frac{1}{2}) & X(\frac{1}{2},1) \\ X(1,\frac{1}{2}) & X(1,1) \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} + a_{11} \\ a_{21} + a_{11} & a_{11} + a_{12} + a_{21} + a_{22} \end{pmatrix}$$

Aside: computing signatures of bilinear membranes

Proposition (L., Schmitz '24)

Given $m \times n$ matrices A_1, \ldots, A_d , the k-th level signature of the associated piecewise bilinear membrane in \mathbb{R}^d can be computed in $O(d^k k^3 mn)$.

```
... word = list(np.random.randint(1, d+1, k)) #creates a random word of length k, with letters in\
{1,..., d}
... wordstr = ''.join(str(x) for x in word)
... start_time = timeit.default_timer()
... out = sig(membrane, word)
... elapsed_time = timeit.default_timer() - start_time
... # Print the output and elapsed time
... # Print the output and elapsed time
... print(1"Evaluated signature of bilinear membrane of order {(m,n)} at word {wordstr} in {elaps\
ed_time: of } seconds. Result: {output}
...
Evaluated signature of bilinear membrane of order (100, 100) at word 21122 in 0.464673 seconds. Result: -115
6190.415377495
>>>
```

Dictionaries for membranes

Let $m, n \in \mathbb{N}$. We can view a collection of $m \times n$ matrices A_1, \ldots, A_d as a map $A : \mathbb{R}^m \otimes \mathbb{R}^n \to \mathbb{R}^d$.

Lemma

There are membranes $\mathsf{Mon}^{m,n}$ and $\mathsf{Axis}^{m,n}$ in $\mathbb{R}^m \otimes \mathbb{R}^n$ such that for any $A : \mathbb{R}^m \otimes \mathbb{R}^n \to \mathbb{R}^d$, $A \circ \mathsf{Mon}^{m,n}$ is the polynomial resp. piecewise bilinear membrane represented by A.

We call these membranes $dictionaries^4$ for polynomial resp. piecewise bilinear membranes of order (m, n), and their signature matrices the *core matrices*.

⁴M. Pfeffer, A. Seigal, and B. Sturmfels. "Learning Paths from Signature Tensors". In: *SIAM Journal on Matrix Analysis and Applications* (2019).

A tale of one membrane

- recall equivariance: $S(A \circ X) = AS(X)A^{\top}$
- ► ⇒ the sets of signature matrices we are interested in are given by congruence orbits of the core matrices:

$$AS(\mathsf{Mon}^{m,n})A^{\mathsf{T}}$$
 and $AS(\mathsf{Axis}^{m,n})A^{\mathsf{T}}$.

Proposition

The sets of signature matrices for polynomial membranes of order (m, n) and piecewise bilinear membranes of order (m, n) in \mathbb{R}^d agree.

A tale of one membrane

Proof.

- ▶ It suffices to find an invertible matrix that takes one core matrix to the other under congruence
- ► The analogous problem for Mom^m and Axis^m, the dictionaries for polynomial paths of degree ≤ m resp. piecewise linear paths with ≤ m segments, was solved by Améndola, Friz and Sturmfels.⁵
- Recall: if $Z(s,t) = X(s) \otimes Y(t)$ for paths X, Y then $S(X \otimes Y) = S(X) \otimes S(Y)$.
- Observation: $\operatorname{Mon}^{m,n}(s,t) = \operatorname{Mon}^{m}(s) \otimes \operatorname{Mon}^{n}(t)$ and $\operatorname{Axis}^{m,n} = \operatorname{Axis}^{m}(s) \otimes \operatorname{Axis}^{n}(t)$.

⁵C. Améndola, P. Friz, and B. Sturmfels. "Varieties of signature tensors". In: *Forum of Mathematics, Sigma* 7 (2019).

Matrix varieties from membrane signatures

- Let $\mathcal{M}_{d,m,n}^{\text{im}}$ denote the set of signature matrices of polynomial membranes of order (m, n).
- ▶ We are interested in the algebraic relations on $\mathcal{M}_{d,m,n}^{\text{im}}$: so we might as well consider the Zariski closure $\mathcal{M}_{d,m,n}$ of $\mathcal{M}_{d,m,n}^{\text{im}}$. This is the set of all points satisfying the relations that hold on $\mathcal{M}_{d,m,n}^{\text{im}}$. We call $\mathcal{M}_{d,m,n}$ the signature matrix variety.
- Question: what is the dimension and degree of $\mathcal{M}_{d,m,n}$? Can we understand its ideal?
- Idea: use normal form under congruence of the core matrix.⁶⁷

⁶R. A. Horn and V. V. Sergeichuk. "Canonical forms for complex matrix congruence and *congruence". In: *Linear Algebra and its Applications* 416.2 (2006).

⁷F. De Terán and F. M. Dopico. "The solution of the equation $XA + AX^{\mathsf{T}} = 0$ and its application to the theory of orbits". In: *Linear Algebra and its Applications* 434.1 (2011).

Main results

Theorem

Let $S_{a,b}$ be the variety of $d \times d$ matrices whose symmetric part has rank $\leq a$ and whose skew-symmetric part has rank $\leq b$. Then

4.
$$S_{(m-1)(n-1)+1,m+n-2} = \mathcal{M}_{d,m,n}$$
 if m, n are odd.

Theorem (L., Schmitz '24) We have $\mathcal{M}_{d,m,n} = \mathbb{R}^{d \times d}$ for $m + n \ge d + 1$.

Dimension and degree?

Theorem (L., Schmitz '24)

For $mn \leq d$ the dimension of $\mathcal{M}_{d,m,n}$ is

- $dmn \frac{1}{2}m^2n^2 + m^2(n-1) + (m-1)n^2 \frac{7}{2}mn + 4(m+n) 4$ for even m, n.
- $dmn \frac{1}{2}m^2n^2 + m^2(n-1) + (m-1)n^2 \frac{3}{2}mn + m + n$ for even m, odd n.
- $dmn \frac{1}{2}m^2n^2 + m^2(n-1) + (m-1)n^2 \frac{7}{2}mn + 3(m+n) 2$ for odd m, n.

Theorem (L., Schmitz '24)

For m, n odd, $m + n \leq d$, $\mathcal{M}_{d,m,n}$ is the complete intersection of the vanishing locus of the ((m-1)(n-1)+2))-minors of the symmetric part with the vanishing locus of the (m + n)-Pfaffians of the skew-symmetric part of a $d \times d$ matrix. The degree of $\mathcal{M}_{d,m,n}$ is

$$\frac{1}{2^{d-(m+n)+2}}\prod_{\alpha=0}^{d-(m-1)(n-1)}\frac{\binom{d+\alpha}{d-(m-1)(n-1)+1-\alpha}}{\binom{2\alpha+1}{\alpha}}\prod_{\alpha=0}^{d-(m+n)}\frac{\binom{d+\alpha}{d-(m+n)+1-\alpha}}{\binom{2\alpha+1}{\alpha}}$$

Conclusion

- Signature matrices of membranes generalize signature matrices of paths.
- ▶ We proved that there are no algebraic redundancies in the entries of signature matrices of membranes. We expect this to be true for higher level signature tensors as well.
- We showed that the id-signature of piecewise bilinear membranes can be computed efficiently, making it interesting for applications.
- Further study is necessary to understand which properties of a membrane are characterized by its id-signature.