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The signature of a path
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Paths and tensors
Let V be a finite dimensional R-vector space.

Definition
A path in V is a continuous, piecewise continuously differentiable
map X ∶ [0, 1] → V .

Theorem (Chen 1958
2
)

There is a natural injection

σ ∶ {Paths in V }/∼ → T (V ∨)∨

where ∼ identifies paths that are equal up to translation,
reparametrization and tree-like excursions. Here,

T (V ∨) ∶= ⨁
k∈N0

(V ∨)⊗k
.

2
K.-T. Chen. “Integration of Paths – A Faithful Representation of Paths by

Noncommutative Formal Power Series”. In: Transactions of the American
Mathematical Society 89.2 (1958), pp. 395–407.
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The signature of a path

Definition
Let X be a path in V . Then the signature σ(X) of X is the linear
form

T (V ∨) → R

α1 ⊗ . . .⊗ αk ↦ ∫
∆k

(α1 ◦X)′(t1) . . . (αk ◦X)′(tk) dt1 . . . dtk

where ∆k denotes the k-simplex

{(t1, . . . , tk) ∣ 0 ≤ t1 ≤ . . . ≤ tk ≤ 1}.

The restriction of σ(X) to (V ∨)⊗k
can be viewed as an element of

V
⊗k

and it is called the k-th level signature tensor of X.
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The signature of a path

Example

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

X ∶ [0, 1] → R2
, t ↦ (t, 4t(1 − t))

Let us compute σ(X)(e∗2 ) and σ(X)(e∗1 ⊗ e
∗
2 ).
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X ∶ [0, 1] → R2
, t ↦ (t, 4t(1 − t))

σ(X)(e∗2 ) = ∫
∆1

(e∗2 ◦X)′(t)dt = [4t(1 − t)]10 = 0

σ(X)(e∗1 ⊗ e
∗
2 ) = ∫

∆2

(e∗1 ◦X)′(t1)(e∗2 ◦X)′(t2)dt1dt2

= ∫
1

0
(e∗2 ◦X)′(t2) ⋅ [t1]t20 dt2

= ∫
1

0
4t2 − 8t

2
2dt2 = [2t22 −

8

3
t
3
2]10 = −

2

3
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Encoding tensors in Macaulay2

▶ After choosing a basis b1, . . . , bd of V we can wlog. assume
V = Rd

.

▶ We can identify T ((Rd)∨) resp. T (Rd) with the free
associative algebra R⟨1, . . . , d⟩ over the alphabet 1, . . . , d via

e
∗
1 ⊗ . . .⊗ e

∗
d ↦ i1 . . . id

resp.
e1 ⊗ . . .⊗ ed ↦ i1 . . . id.

▶ We use this to encode tensors in Macaulay2 as
non-commutative polynomials, provided by the package
NCAlgebra. PathSignatures introduces some additional
methods for working with these polynomials.



7/25

Encoding tensors in Macaulay2

▶ After choosing a basis b1, . . . , bd of V we can wlog. assume
V = Rd

.

▶ We can identify T ((Rd)∨) resp. T (Rd) with the free
associative algebra R⟨1, . . . , d⟩ over the alphabet 1, . . . , d via

e
∗
1 ⊗ . . .⊗ e

∗
d ↦ i1 . . . id

resp.
e1 ⊗ . . .⊗ ed ↦ i1 . . . id.

▶ We use this to encode tensors in Macaulay2 as
non-commutative polynomials, provided by the package
NCAlgebra. PathSignatures introduces some additional
methods for working with these polynomials.



7/25

Encoding tensors in Macaulay2

▶ After choosing a basis b1, . . . , bd of V we can wlog. assume
V = Rd

.

▶ We can identify T ((Rd)∨) resp. T (Rd) with the free
associative algebra R⟨1, . . . , d⟩ over the alphabet 1, . . . , d via

e
∗
1 ⊗ . . .⊗ e

∗
d ↦ i1 . . . id

resp.
e1 ⊗ . . .⊗ ed ↦ i1 . . . id.

▶ We use this to encode tensors in Macaulay2 as
non-commutative polynomials, provided by the package
NCAlgebra. PathSignatures introduces some additional
methods for working with these polynomials.



8/25

Encoding tensors in Macaulay2

Example

i1 : needsPackage "PathSignatures";

i2 : A2 = wordAlgebra(2);

i3 : f = [1,2]_A2 - [2,1]_A2

o3 = -Lt Lt +Lt Lt

2 1 1 2

o3 : A2

i4 : f // wordFormat

o4 = - [2, 1] + [1, 2]
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Encoding paths in Macaulay2
▶ PathSignatures.m2 provides a type for (piecewise)

polynomial paths. An instance is constructed by giving the
coordinate functions.

Example

i5 : QQ[t];

i6 : X = polyPath({t, 4 * t * (1-t)})

o6 = Path in 2-dimensional space with 1 polynomial segment:

2

{{t, - 4t + 4t}}

o6 : Path

▶ The signature of the path X is represented by the method
sig(X,⋅) which takes a non-commutative polynomial as input.

▶ For an integer k, sig(X,k) returns the k-th level signature of
X as a non-commutative polynomial.
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The signature in Macaulay2

Example

i7 : sig(X, [2]_A2)

o7 = 0

i8 : sig(X, [1,2]_A2)

2

o8 = - -

3

i9 : sig(X, 2)

2 2 1

o9 = - [2, 1] - - [1, 2] + - [1, 1]

3 3 2
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Interpretation of signatures

▶ The first level signature gives the increment of the path

▶ The second level signature encodes the Levy area of all
projections of the path to two coordinates.

Example

i10 : sig(X,[1,2]_A2 - [2,1]_A2)

4

o10 = - -

3

▶ In general, signature values can be interpreted as “areas of
areas”

3
.

3
J. Diehl, T. Lyons, R. Preiß, and J. Reizenstein. “Areas of areas generate

the shuffle algebra”. In: arXiv preprint arXiv:2002.02338 (2020).
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Path signatures in theory and application

▶ Path signatures were originally studied by Chen
4
in the context

of algebraic topology and differential geometry.

▶ Later, they became central to the theory of rough paths in
stochastic analysis.

5

▶ Signatures are successfully used as a feature for paths in
machine learning, for example in hand-writing recognition.

6

▶ Iterated integrals of this form also appear in High Energy
Physics and Number Theory (polylogarithms, MZVs, . . . )

4
K.-T. Chen. “Iterated Integrals and Exponential Homomorphisms”. In:

Proceedings of The London Mathematical Society (1954), pp. 502–512.
5
T. J. Lyons. “Differential equations driven by rough signals”. In: Revista

Matemática Iberoamericana 14.2 (1998), pp. 215–310.
6
B. Graham. Sparse arrays of signatures for online character recognition.

2013. arXiv: 1308.0371 [cs.CV]. url: https://arxiv.org/abs/1308.0371.

https://arxiv.org/abs/1308.0371
https://arxiv.org/abs/1308.0371
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Matemática Iberoamericana 14.2 (1998), pp. 215–310.
6
B. Graham. Sparse arrays of signatures for online character recognition.

2013. arXiv: 1308.0371 [cs.CV]. url: https://arxiv.org/abs/1308.0371.

https://arxiv.org/abs/1308.0371
https://arxiv.org/abs/1308.0371


12/25

Path signatures in theory and application

▶ Path signatures were originally studied by Chen
4
in the context

of algebraic topology and differential geometry.

▶ Later, they became central to the theory of rough paths in
stochastic analysis.

5

▶ Signatures are successfully used as a feature for paths in
machine learning, for example in hand-writing recognition.

6

▶ Iterated integrals of this form also appear in High Energy
Physics and Number Theory (polylogarithms, MZVs, . . . )

4
K.-T. Chen. “Iterated Integrals and Exponential Homomorphisms”. In:

Proceedings of The London Mathematical Society (1954), pp. 502–512.
5
T. J. Lyons. “Differential equations driven by rough signals”. In: Revista
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Algebraic structure of signatures
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Algebraic structure of signatures

▶ R⟨1, . . . , d⟩ is a commutative algebra when equipped with the
shuffle product �.

Example

12� 34 = 1234 + 1324 + 1342 + 3124 + 3142 + 3412

▶ For any path X, the signature σ(X) is an algebra
homomorphism (R⟨1, . . . , d⟩,+,�) → (R,+, ⋅).

Example

i11 : sh = [1,1]_A2 ** [2,2]_A2; sh // wordFormat

o12 = [2, 2, 1, 1] + [2, 1, 2, 1] + [2, 1, 1, 2] +

---------------------------------------------

[1, 2, 2, 1] + [1, 2, 1, 2] + [1, 1, 2, 2]

i13 : sig(X, sh) == sig(X, [1,1]_A2) * sig(X, [2,2]_A2)

o13 = true
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Concatenation of paths

▶ The subset of algebra homomorphisms in (R⟨1, . . . , d⟩)∨ forms

a Lie group G(Rd) with the group multiplication given by
folding:

f ∗ g(i1 . . . ik) =
k

∑
j=0

f(i1 . . . ij)g(ij+1 . . . ik).

▶ If X • Y denotes the concatenation of paths X and Y then
σ(X • Y ) = σ(X) ∗ σ(Y ) (Chen’s identity).

▶ PathSignatures uses this to compute the signature of
piecewise polynomial paths.
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Concatenation of paths

Example

i1 : needsPackage "PathSignatures";

i2 : S = QQ[a_(1,1)..a_(3,2)];

i3 : X = linPath({a_(1,1),a_(1,2)}) ** linPath({a_(2,1),a_(2,2)}) ** linPath({a_(3,1),a_(3,2)})

o3 = Path in 2-dimensional space with 3 polynomial segments:

{{a t, a t}, {a t, a t}, {a t, a t}}

1,1 1,2 2,1 2,2 3,1 3,2

o3 : Path

i4 : A2 = wordAlgebra(2);

i5 : sig(X,[1,2]_A2 - [2,1]_A2)

o5 = - a a + a a - a a - a a + a a + a a

1,2 2,1 1,1 2,2 1,2 3,1 2,2 3,1 1,1 3,2 2,1 3,2

o5 : S
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Varieties of signature tensors
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Varieties of signature tensors

▶ Goal: understand connections between paths and the signature
tensors that represent them.

▶ From an algebra-geometric viewpoint, this leads to the study of
signature varieties for families of paths.

7
They are obtained as

the Zariski closure of the set of (k-th level) signature tensors of
paths in the family.

▶ A parametrized family of paths induces a parametrized family
of signature tensors.

▶ Main point: in the case where the parametrization is
polynomial, determining the signature tensor variety is an
implicitization problem.

▶ → Macaulay2, NumericalImplicitization,
MultigradedImplicitization . . .

7
C. Améndola, P. Friz, and B. Sturmfels. “Varieties of signature tensors”. In:

Forum of Mathematics, Sigma 7 (2019).
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Varieties of signature tensors

Example

Consider degree 2 polynomial paths in R2
. This family is

parametrized by matrices A ∈ R2×2
:

XA ∶= (a11t + a12t
2
, a21t + a22t

2)

It is immediate from the definition that the entries of σ
(k)(XA) are

homogeneous degree k polynomials in the entries of A. For example,

σ
(2)(XA) is given by

(
1
2
a
2
11+a11a12+

1
2
a
2
12

1
2
a11a21+

1
3
a12a21+

2
3
a11a22+

1
2
a12a22

1
2
a11a21+

2
3
a12a21+

1
3
a11a22+

1
2
a12a22

1
2
a
2
21+a21a22+

1
2
a
2
22

)

The associated signature matrix variety in R2×2
is cut out by the

equation X11X22 − (1
2
(X12 +X21))2, the determinant of the

symmetric part of the matrix.
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Using PathSignatures

Example

i1 : needsPackage "PathSignatures";

i2 : S = QQ[a_(1,1)..a_(2,2)];

i3 : R = S[t];

i4 : X = polyPath({a_(1,1) * t + a_(1,2) * t^2,

a_(2,1) * t + a_(2,2) * t^2})

o4 = Path in 2-dimensional space with 1 polynomial

segment:

2 2

{{a t + a t, a t + a t}}

1,2 1,1 2,2 2,1

o4 : Path
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Using PathSignatures

Example

i5 : A2 = wordAlgebra(2, CoefficientRing => S);

i6 : sig(X,[1,2]_A2)

1 1 2 1

o6 = -a a + -a a + -a a + -a a

2 1,1 2,1 3 1,2 2,1 3 1,1 2,2 2 1,2 2,2

o6 : S
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Using PathSignatures

Example

i7 : T = sig(X,2);

i8 : m = tensorParametrization(T);

o8 : RingMap S <-- QQ[b , b , b , b ]

[1, 2] [2, 2] [2, 1] [1, 1]

i9 : kernel m

2 2

o9 = ideal(b + 2b b + b

[1, 2] [1, 2] [2, 1] [2, 1]

- 4b b )

[2, 2] [1, 1]
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Using PathSignatures

Example

i10 : T = sig(X,4);

i11 : m = tensorParametrization(T);

o11 : RingMap S <-- QQ[...]

i12 : I = kernel m;

o12 : Ideal of QQ[...]

i13 : dim I

o13 = 4

i14 : degree I

o14 = 24
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Using PathSignatures

Example

i15 : betti mingens I

0 1

o15 = total: 1 56

0: 1 1

1: . 55

o15 : BettiTally

This reproduces the data from Table 2 in “Varieties of signature
tensors”

8
.

8
C. Améndola, P. Friz, and B. Sturmfels. “Varieties of signature tensors”. In:

Forum of Mathematics, Sigma 7 (2019).
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